- (a) Find the equation of the median CM.
- Find the equation of the altitude AD. (b)
- Find the coordinates of the point of intersection of (c) CM and AD.

part	marks	Unit	no	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	1.1
part	IIIai KS	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	1,1
(a)	3	1.1					3		1.1.7		Source
(b)	3	1.1					3		1.1.7	1.1.9	1999 Paper 2
(c)	3	0.1					3		0.1		Qu. 1

(a)
$$\bullet^1$$
 midpoint = $(4, 2)$

•
2
 $m_{MC} = -3$

•3
$$y-2=-3(x-4)$$
 or $y-(-7)=-3(x-7)$

(b)
$$\bullet^4$$
 $m_{BC} = 2$

•
5
 $m_{\perp} = -\frac{1}{2}$

$$\begin{array}{ll} \bullet^4 & m_{BC} = 2 \\ \bullet^5 & m_\perp = -\frac{1}{2} \\ \bullet^6 & y - 1 = -\frac{1}{2} \big(x - (-4) \big) \end{array}$$

(c) •7 e.g.
$$3x + y = 14$$
 and $x + 2y = -2$

- attempt to eliminate a variable
- (6, -4)

The diagram shows a circle, centre P, with equation (a)

$$x^2 + y^2 + 6x + 4y + 8 = 0.$$

Find the equation of the tangent at the point A(-1, -1) on the circle.

4

1

1

2

- The tangent crosses the *y*-axis at B. (b) Find the coordinates of B.
- (c) Another circle, centre P, is drawn passing through B. The tangent at A meets the second circle at the point C, as shown in the diagram.

Write down the coordinates of C.

Find the equation of the circle with BC as diameter. (*d*)

part	marks	Unit	no	n-calc	ca	alc	cal	c neut	Conte	ent Reference :	0.4
part	marks	Oilit	С	A/B	С	A/B	С	A/B	Main	Additional	2.4
(a)	4	2.4					4		2.4.2	1.1.9	Source
(b)	1	0.1					1		0.1		1999 Paper 2
(c)	1	0.1					1		0.1		Qu. 2
(d)	2	2.4					2		2.4.4		·

(a)
$$\bullet^1$$
 centre = $(-3, -2)$

•²
$$m_{rad} = \frac{1}{2}$$

•
3
 $m_{tgt} = -2$

•
4
 $y-(-1)=-2(x-(-1))$

(b)
$$\bullet^5 B = (0, -3)$$

(c)
$$\bullet^6 C = (-2, 1)$$

$$(d) \qquad \bullet^7 \qquad r^2 = 5$$

(d) •
$$r^2 = 5$$
• $(x+1)^2 + (y+1)^2 = 5$

 \boldsymbol{K} lies two thirds of the way along HG.

- (i.e. HK:KG = 2:1).
- L lies one quarter of the way along FG.
- (i.e. FL:LG = 1:3).

 \overrightarrow{AB} , \overrightarrow{AD} and \overrightarrow{AE} can be represented by the vectors

$$\begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} -8 \\ 4 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$ respectively.

- (b) Calculate the components of AL.
- (c) Calculate the size of angle KAL.

									_		
n a mt	manlıa	I Insit	no	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	3.1
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	0.1
(a)	2	3.1					2		3.1.2		Source
(b)	2	3.1					2		3.1.2		1999 Paper 2
(c)	5	3.1					5		3.1.11		Qu. 3

(a)
$$\bullet^1$$
 obtaining for example $\begin{pmatrix} 2\\4\\2 \end{pmatrix}$

(c) •5 strategy e.g.
$$\cos K\hat{A}L = \frac{\overrightarrow{AK}.\overrightarrow{AL}}{|AK|\times |AL|}$$

- •⁶ 109
- 7 $\sqrt{171}$
- •8 $\sqrt{101}$
- \bullet^9 $\hat{A} = 34.0$

(b) •3 obtaining for example
$$\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

•5 strategy e.g.
$$\cos K\hat{A}L = \frac{AK^2 + AL^2 - KL^2}{2AK \times AL}$$

 \bullet^6 $\sqrt{54}$

OR

- \bullet^7 $\sqrt{171}$
- •⁸ √101
- •9 $\hat{A} = 34.0$

$$\bullet^{4} \quad \overrightarrow{AL} = \begin{pmatrix} 2 \\ 4 \\ 9 \end{pmatrix}$$

2

The parabola shown in the diagram has equation $y = 4x - x^2$ and intersects the *x*-axis at the origin and P.

- (a) Find the coordinates of the point P.
- (*b*) R is the point (0, 2). Find the equation of PR.
- (c) The line and the parabola also intersect at Q. Find the coordinates of Q.

nont	monka	Unit	no	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	0.1
part	marks	Ullit	С	A/B	С	A/B	С	A/B	Main	Additional	2.1
(a)	2	1.2	2						1.2.9		Source
(b)	2	1.1	2						1.1.7		1999 Paper 2
(c)	4	2.1	4						2.1.8		Qu. 4

(a)
$$\bullet^1 \quad 4x - x^2 = 0$$
 stated or implied by \bullet^2

(b) • 3
$$m = -\frac{1}{2}$$

• 4 $y = -\frac{1}{2}x + 2$
or $y - 2 = -\frac{1}{2}(x - 0)$
or $y - 0 = -\frac{1}{2}(x - 4)$

(c)
•5
$$4x - x^2 = 2 - \frac{1}{2}x$$

•6 $e.g.$ $2x^2 - 9x + 4 = 0$
•7 $x = \frac{1}{2}, x = 4$
•8 Q is $(\frac{1}{2}, \frac{7}{4})$

2

A zookeeper wants to fence off six individual animal pens.

Each pen is a rectangle measuring *x* metres by *y* metres, as shown in the diagram.

- (a) (i) Express the total length of fencing in terms of *x* and *y*.
 - (ii) Given that the total length of fencing is 360m, show that the total area, A m², of the six pens is given by $A(x) = 240x \frac{16}{3}x^2$.
- (*b*) Find the values of *x* and *y* which give the maximum area and write down this maximum area.

nort	marks	Unit	no	n-calc	ca	ılc	cal	c neut	Content Reference :	1.3
part	marks	Omt	С	A/B	С	A/B	C	A/B	Main Additional	1.0
(a)	4	0.1					9	9	0.1	Source
(a)	4	0.1					۵	۷ ا	0.1	1999 Paper 2
(b)	6	1.3					6		1.3.15	1 <u>-</u> 1
l										Qu. 5

Functions f and g are defined on the set of real numbers by

$$f(x) = x - 1$$

$$g(x) = x^2$$

Find formulae for (i) (a)

(ii)
$$g(f(x))$$
.

The function h is defined by h(x) = f(g(x)) + g(f(x)). (b) Show that $h(x) = 2x^2 - 2x$ and sketch the graph of h.

3

4

Find the area enclosed between this graph and the *x*-axis. (c)

									_		
n aut	ma a ml r a	I Ingit	no	n-calc	ca	alc	cal	c neut	Conte	ent Reference :	2.2
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	~.~
(a)	4	1.2	4						1.2.6		Source
(b)	3	1.2	3						1.2.9	0.1	1999 Paper 2
(c)	4	2.2	4						226		Qu. 6

• $f(x^2)$ stated or implied by • $(x^2 - 1)$ • $f(x^2)$ stated or implied by • $(x^4 - 1)^2$

(c) $\bullet^8 \quad \int_0^1 \left(2x^2 - 2x\right) dx$

•¹¹ dealing with – ve

- 5 $(x-1)^2 + x^2 1$ and complete proof
 - •6 sketch as shown

• 7 minimum at $(\frac{1}{2}, -\frac{1}{2})$ calculated or on sketch

The intensity I_t of light is reduced as it passes through a filter according to the law $I_t = I_0 e^{-kt}$ where I_0 is the initial intensity and I_t is the intensity after passing through a filter of thickness tcm. k is a constant.

A filter of thickness 4 cm reduces the intensity from 120 candle-power to 90 candle-power. (a) Find the value of *k*.

4

The light is passed through a filter of thickness 10 cm. Find the percentage reduction in its (b) intensity.

3

pai	t marks	Unit	no	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	3.3
Pa	t marks	Ollit	С	A/B	С	A/B	С	A/B	Main	Additional	0.0
(a) (b)	4 3	3.3 3.3			2	2 2			3.3.7 3.3.7		Source 1999 Paper 2 Qu. 7

(a)
$$\bullet^1$$
 90 = 120 e^{-4k}

•¹
$$90 = 120e^{-4k}$$

•² $e^{-4k} = 0.75$ **or** $\ln 90 = \ln 120 + \ln e^{-4k}$
•³ $\ln 0.75 = -4k$
•⁴ $k = 0.0719$

•
3
 $\ln 0.75 = -4k$

$$\bullet^4$$
 $k = 0.0719$

(b) •⁵
$$I_{10} = I_0 e^{-10 \times 0.0719}$$
 stated or implied by •⁶ •⁶ $\frac{I_{10}}{I_{-}} = 0.487$

•6
$$\frac{I_{10}}{I_0} = 0.487$$

•⁷ 51.3% reduction

The diagram shows a circle of radius 1 unit and centre the origin. The radius OP makes an angle a° with the positive direction of the *x*-axis.

(a)Show that P is the point $(\cos a^\circ, \sin a^\circ)$.1(b)If $\hat{POQ} = 45^\circ$, deduce the coordinates of Q in terms of a.1(c)If $\hat{POR} = 45^\circ$, deduce the coordinates of R in terms of a.1(d)Hence find an expression for the gradient of QR in its simplest form.4(e)Show that the tangent to the circle at P is parallel to QR.2

part	marks	Unit	no	n-calc	ca	alc	cal	c neut	Conte	ent Reference :	0.0
part	marks	Ollit	С	A/B	С	A/B	С	A/B	Main	Additional	2.3
(a)	1	0.1	1						0.1		Source
(b)	1	0.1	1						0.1		1999 Paper 2
(c)	1	0.1	1						0.1		
(d)	4	2.3		4					2.3.2	1.1.1	Qu. 8
(e)	2	1.1		2					1.1.8	1.1.9	

- (a) \bullet^1 proof e.g. showing rt angled triangle with "1" and a°
- (b) 2 Q is $(\cos(a-45)^\circ, \sin(a-45)^\circ)$
- (c) 3 R is $(\cos(a+45)^{\circ}, \sin(a+45)^{\circ})$
- (d) $\frac{\sin(a+45)-\sin(a-45)}{\cos(a+45)-\cos(a-45)}$
 - $\overset{\bullet}{\circ} \frac{\sin a \cos 45 + \cos a \sin 45 \sin a \cos 45 + \cos a \sin 45}{\cos a \cos 45 \sin a \sin 45 \cos a \cos 45 \sin a \sin 45}$
 - $\begin{array}{r}
 \bullet^{6} & \frac{2\cos a\sin 45}{-2\sin a\sin 45}
 \end{array}$
 - $-\frac{1}{\tan a}$
- (e) $M_{OP} = \frac{\sin a}{\cos a} = \tan a$
 - m_{tgt} at $P = -\frac{1}{\tan a}$

part ma	orke	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	3.4
part ma	arks	Ollit	С	A/B	С	A/B	С	A/B	Main	Additional	0.1
. 8		3.4				8			3.4.2		Source 1999 Paper 2 Qu. 9

.2 .3 .4 .5	strategy: e.g $k \sin(x - k \sin x \cos a - k \cos x \sin a$ $k \cos a = 2$ and $k \sin a = 3$ $k = \sqrt{13}$ a = 56.3 $\sin(x - 56.3) = \frac{2.5}{\sqrt{13}}$	a) stated or implied by • 6 stated explicitly stated explicitly	$k\cos(x-a)$ $k\cos x \cos a +$ $k\cos a = -3$, $k = \sqrt{13}$, $\tan a = 146.3$ $\cos(x-146.3)$ x-146.3=46 x=192.4, $46x=192.4$, 10	ksin $a = 2$ $a = -\frac{2}{3}$ = 0.693 .1, 313.9 10.2
.7 .8 OR .7 .8	x - 56.3 = 43.9, 136.1 100.2° and 192.4° $x - 56.3 = 43.9$, $x = 100.2^{\circ}$ 192.4°	136.1 stated or implied by the appearance of 192.4 in •8	ksin(x+a) ksin xcos a+ kcos xsin a kcos a = 2, ksin a = -3 $k = \sqrt{13}$, tan $a = -\frac{3}{2}$ a = 303.7 sin(x+303.7) = 0.693 x+303.7 = 43.9, 136.1 x = -259.8, -167.6 x = 100.2, 192.4	$k\cos(x+a)$ $k\cos x \cos a - k\sin x \sin a$ $k\cos a = -3$, $k\sin a = -2$ $k = \sqrt{13}$, $\tan a = \frac{2}{3}$ a = 213.7 $\cos(x+213.7) = 0.693$ x+213.7 = 46.1, 313.9 x = -167.6, 100.2 x = 192.4, 100.2

The origin, O, and the points P and Q are the vertices of a curved 'triangle' which is shaded in the diagram. The sides lie on curves with equations

$$y = x(x+3)$$
, $y = x - \frac{1}{4}x^2$ and $y = \frac{4}{x^2}$

- P and Q have coordinates (p, 4) and (q, 1). Find (a) the values of p and q.
- Calculate the shaded area. (b)

nont	monka	Unit	no	n-calc	ca	alc	cal	c neut	Conter	nt Reference :	2.2
part	marks	UIII	С	A/B	С	A/B	С	A/B	Main	Additional	~.~
(a) (b)	2 7	1.2 2.2	2	7					1.2.9 2.2.7		Source 1999 Paper 2 Qu. 10

(a) •
$$p = 1$$

• $q = 2$
(b) • $\frac{1}{3} \int_{0}^{1} (GP' - GQ') dx + \int_{1}^{2} (PQ' - GQ') dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x - x + \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x - x + \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{0}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx$
• $\frac{1}{3} \int_{0}^{1} (x^{2} + 3x) dx + \int_{0}^{2} (4x^{-2}) dx - \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx + \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx + \int_{0}^{2} (x - \frac{1}{4}x^{2}) dx + \int_$

$$\begin{array}{lll}
\bullet^{3} & \int_{0}^{1} \dots dx + \int_{1}^{2} \dots dx - \int_{0}^{2} \dots dx \\
\bullet^{4} & \int_{0}^{1} \left(x^{2} + 3x\right) dx + \int_{1}^{2} \left(4x^{-2}\right) dx - \int_{0}^{2} \left(x - \frac{1}{4}x^{2}\right) dx \\
\bullet^{5} & \left[\frac{1}{3}x^{3} + \frac{3}{2}x^{2}\right] \\
\bullet^{6} & \left[-4x^{-1}\right] \\
\bullet^{7} & \left[\frac{1}{2}x^{2} - \frac{1}{12}x^{3}\right] \\
\bullet^{8} & \text{any two evaluations from } \frac{11}{6}, 2, \frac{4}{3} \\
\bullet^{9} & \text{third evaluation and area} = \frac{11}{6} + 2 - \frac{4}{3} = 2\frac{1}{2}
\end{array}$$

2

The diagram shows a sketch of the graph of $y = x^3 - 9x + 4$ and two parallel tangents drawn at P and Q.

- Find the equations of the tangents to the curve $y = x^3 9x + 4$ (a) which have gradient 3.
- Show that the shortest distance between the tangents is $\frac{16\sqrt{10}}{5}$. (b)

part marks	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	1.3
part marks	Om	С	A/B	С	A/B	С	A/B	Main	Additional	110
(a) 6 (b) 6	1.3 1.1					6	6	1.3.9 1.1.10	1.1.7	Source 1999 Paper 2 Qu. 11

(a) • 1 strategy:
$$\frac{dy}{dx} = \dots = 3$$
• 2 $3x^2 - 9$
• 3 $x = 2, -2$
• 4 $y = -6, 14$
• 5 $y + 6 = 3(x - 2)$
• 6 $y - 14 = 3(x + 2)$

$$\bullet^2$$
 $3x^2-9$

•
$$x = 2, -2$$
 OF

•
$$v = -6$$
 14

$$\bullet^5 \quad y+6=3(x-2)$$

•
6
 $y-14=3(x+2)$

$$\bullet^9$$
 $AB = AO + OB$

$$\bullet^{10} \quad AB = 20\cos a + 12\cos a$$

•11 using
$$\tan a = \frac{3}{1}$$

•12
$$AB = 32 \times \frac{1}{\sqrt{10}} = 32 \times \frac{\sqrt{10}}{10} = \frac{32}{5} \sqrt{10}$$

•
$$m_{RS} = -\frac{1}{3}$$

•8 equ of RS:
$$y = -\frac{1}{2}x$$

•9
$$-\frac{1}{3}x = 3x - 12 \& -\frac{1}{3}x = 3x + 20$$

• 10
$$R(-6,2)$$
 and $S(\frac{18}{5},-\frac{6}{5})$

• 7
$$m_{RS} = -\frac{1}{3}$$

• 8 equ of RS: $y = -\frac{1}{3}x$
• 9 $-\frac{1}{3}x = 3x - 12$ & $-\frac{1}{3}x = 3x + 20$
• 10 $R(-6,2)$ and $S(\frac{18}{5}, -\frac{6}{5})$
• 11 $d^2 = (-6 - (\frac{18}{5}))^2 + (2 - (-\frac{6}{5}))^2$

•
$$d^2 = \frac{48^2}{25} + \frac{16^2}{25}$$
 and completes proof